01
Hase und Igel
Ein Quader trägt auf der Grund- und Deckfläche
das Bild eines Hasen bzw. eines Igels. Kippt man den Quader
über die Kanten nach links/ rechts/vorn/hinten, so
hinterlässt er eine Spur. Aufgabe: Zu gegebener
Startposition, etwa Hase oben, sichvorstellen, wer in der
Endposition oben liegt, Igel oder Hase. Wessen
Vorstellungskraft nicht ausreicht, kann das mehrmalige Kippen
mit dem beiliegenden Quader ausführen. Im
nebenstehenden Bild führt der Quader sechs Kippbewegungen
aus. Wer liegt am Ende oben? - Ab 3. Schuljahr. - Siehe Raumvorstellung:
Geom. Objekt bewegen sich vorstellen.
02
Farbige Quader drehen - Schülermaterial
Zu einem 6-farbigen Holzquader gibt es drei Kartensätze. Die
Kar- ten eines Satzes zeigen 10 bzw. 11 Raumlagen des Quaders
bei der Dre- hung um eine Achse. Zwei Drehachsen verlaufen
vertikal bzw. horizontal durch den Mittelpunkt gegenüberliegender
Seitenflächen, eine Drehach- se ist eine der Raumdiagonalen.
Die Aufgabe besteht darin, die Karten so anzuordnen, dass sie
die Drehung des Quaders um 360 Grad dar- stellen. Parallel dazu
kann die Drehung mit dem farbigen Holzquader ausgeführt
werden. Das nebenstehende Bild zeigt 4 von 11 Raumlagen der
Drehung um eine der Raumdiagonalen. - Ab 3. Schuljahr. - Siehe
Raumvorstellung: Geom. Objekt bewegen sich vorstellen.
03
Ball-Würfel kippen
Ein mit Bildern von Basket-, Hand- und Volleyball beklebter
Würfel wird auf einem in quadratische Felder unterteilten
Spielfeld von Feld zu Feld gekippt. Hierbei ändert sich die
Lage der Bälle. Aufgabe: Sich die Lage der Bälle nach
mehrmaligem Kippen vorstellen. Wessen Vorstellungs- kraft nicht
ausreicht, kann das mehrmalige Kippen mit dem beiliegenden
Würfel ausführen. Das nebenstehende Bild zeigt eine
einfache, weil nur lineare Kippfolge. - Ab 4. Schuljahr. - Siehe auch
Raumvorstellung: Geom. Objekt bewegen sich vorstellen.
04
Farbige Würfel kippen
Von einem sechsfarbigen Würfel sieht man im Schrägbild
nur drei Far- ben. Kippt man den Würfel nach rechts, links, vorn
oder hinten, werden andere Farben sichtbar. Durch wiederholtes
Kippen kann man insge- samt 24 verschiedene Ansichten erzeugen.
Aufgaben: Die Ansichten so ordnen, dass sich eine Kippfolge ergibt. -
Ausgehend von einer Ansicht eine vorgegebene Kippfolge
durchführen. - Bildreihe um eine fehlende Ansicht zu einer
Kippfolge ergänzen. - Scrabble mit den Ansichten des farbigen
Würfels. Bild: Mit den sechs Ansichten des Würfels eine
Kipp- folge bilden. - Ab 3. Schuljahr. - Siehe auch
Raumvorstellung: Geom. Objekt bewegen sich vorstellen.
05
Farbige Würfel drehen
Zu einem 6-farbigen Holzwürfel gibt es drei Kartensätze. Die
Karten eines Satzes zeigen 12 bzw. 21 Raumlagen des Würfels
bei der Dre- hung um eine Achse. Zwei Drehachsen verlaufen
vertikal bzw. horizontal durch den Mittelpunkt gegenüberliegender
Seitenflächen, eine Drehach- se ist eine der Raumdiagonalen.
Die Aufgabe besteht darin, die Karten so anzuordnen, dass sie
die Drehung des Würfels um 360 Grad dar- stellen. Parallel dazu
kann die Drehung mit dem farbigen Holzwürfel ausgeführt
werden. Das nebenstehende Bild zeigt 6 von 21 Raumlagen der
Drehung um die Raumdiagonale. Ab 3. Schuljahr. - Siehe auch
Raumvorstellung: Geom. Objekt bewegen sich vorstellen.
06
Körper spiegeln
Gegeben sind 24 Holzwürfel zum Bauen von
Würfelkörpern und ein Handspiegel. Aufgaben: 1.
Würfelkörper spiegeln, 2. Die Spiegelebenen
spiegelgleicher Würfelkörper bestimmen. - Es liegen
zwei Versionen vor: 1. Der Würfelkörper ist im Bild
in einzelne Würfel unterteilt. 2. Die Unterteilung des
Körpers in einzelne Würfel fehlt. Das nebenstehende
Bild zeigt eine Aufgabe und ihre Lösung: die Spiegelung
der kleinen Wendeltreppe. - Ab 4. Schuljahr. - Siehe
Raumvorstellung: Geom. Objekt bewegen sich vorstellen.
07
Spiegelebenen - Schülermaterial
Aus gegebenen acht zweifarbigen Würfeln mit je drei roten
und blauen Flächen lassen sich größere, farblich
unterschiedliche Würfel herstellen. Die Aufgabe besteht darin,
die Würfel zunächst nachzubauen und da- nach auf
Spiegelgleichheit und Zahl der Spiegelebenen zu untersuchen.
Das nebenstehende Bild zeigt einen Würfel mit nur einer,
vertikal ver- laufenden Spiegelebene. - Ab 4. Schuljahr. - Siehe auch
Raumvor- stellung: Geom. Objekt bewegen sich vorstellen.
08
Chamäleon-Würfel - Schülermaterial
Die Seitenflächen von 8 kleinen Würfeln zeigen
Chamäleons in 6 verschiedenen Farben. Aus den 8
Würfeln lässt sich ein großer Würfel mit
folgenden Eigenschaften herstellen: Jede Seitenfläche zeigt
Chamä- leons in derselben Farbe. Parallele Seitenflächen
zeigen dieselbe Farbe. Durch Umschichten kann man
schrittweise eine Farbe gegen eine andere tauschen. Das Bild zeigt
Chamäleons in den sechs möglichen Farben auf kleinen
Würfeln. - Ab 4. Schuljahr. - Siehe auch Raum- vorstellung:
Geom. Objekt bewegen sich vorstellen.